
BCI
Brain Computer Interface

for alternative input

Gianluca Moro

2

Revision 20130512

BCI — Technical report

Contents

1 Introduction 5

2 Ongoing research 7

3 Emotiv Epoc 9

3.1 Technical infos . 9

3.1.1 From Emotiv forum . 10

3.2 Software interface . 12

3.3 Emokit . 12

3.4 OpenVibe . 13

3.5 Applications . 14

3.6 Roadmap . 14

4 Hands on tests! 17

4.1 Hardware connection . 17

4.2 Primary data reading . 17

4.3 An open server . 21

4.4 OpenVIBE test . 21

4.5 Test: Evoked potential . 22

4.6 Emotiv to OpenVibe and EEGLab 26

4.6.1 Getting the Emotiv EPOC raw data 26

4.6.2 From raw data to OpenVibe 26

4.6.3 From raw data to EEGLab 29

4.6.4 Conclusion: OpenVibe and EEGLab 35

4.7 A first manual P300 elaboration 36

5 Resources 39

5.0.1 Not strictly BCI . 39

6 Equipment 41

3

4 CONTENTS

7 Tablets, Android, Kernel 43
7.1 ASUS TF101 . 43
7.2 VIA8560 . 45
7.3 ARM toolchain . 46
7.4 Kernel sources . 46

7.4.1 Tablet ROM update 47
7.5 Debian on the Mid and Via8650 tablet 47

8 Acer Iconia A500 kernel recompile 49
8.1 A500 and ClockworkMod ROM Manager 49
8.2 Kernel compilation . 50
8.3 Android partitions’ structure 51
8.4 The kernel and its partition 52
8.5 Iconia A500 and Emotiv EPOC 54

9 References 55

BCI — Technical report

Chapter 1

Introduction

BCI, or Brain Computer Interface is a research field which try to verify and
hopefully realize an interface to a computer controlled just by the user mind.
This is technically feasible, and it has already been done, but mainly with
professional EEG. Now the tecnology is giving us low cost devices whose
quality is sufficient to use this tecnique with an affordable investment.

The possible application are both for users which need to use hands for
other purposes, or to integrate the standar interface to the PC, or persons
unable to use their hands, or even other parts of their body. In this case the
device could notably increase the quality of life of the person.

The technology is mainly based on EEG, and the idea is practically feasi-
ble in the recent years with the availability of portable low cost devices. The
possible hardware is:

• http://www.neurosky.com/ a chip used by various producer, such as
PlxWave or some “mind games” available from Amazon;

• http://www.plxwave.com/ a low cost device, which offer interface APIs
for IOS and Android;

• http://www.emotiv.com/ A low cost - not as low as PlxWave, but with
more sensors.

Let’s see the “Big Picture” (from the technical point of view):

• an acquisition device, an headset such as Emotiv Epoc

• EEG data acquisition

• data is sent via Bluetooth (preferred) or USB

5

http://www.neurosky.com/
http://www.plxwave.com/
http://www.emotiv.com/

6

• data elaboration

• data extrapolation of some meaningful signals to be interpreted by the
computer/mobile as inputs, such as mouse simulation

And the “Big Picture” (from the user point of view):

• syndromes such as Locked in syndrome (one the most critical situ-
ations) http://en.wikipedia.org/wiki/Locked-in syndrome let the pa-
tient conscious but unable to move almost any muscle. This can be an
opportunity to give a new life to such a patient.

• a user with the ability to control 1 signal, can communicate with the
external world ... the more the device can understand from patient’s
EEG, the quicker will the communication run.

BCI — Technical report

http://en.wikipedia.org/wiki/Locked-in_syndrome

Chapter 2

Ongoing research

“The Berlin brain–computer interface: non-medical uses of BCI
technology”, by Benjamin Blankertz, MichaelTangermann, CarmenVidau-
rre, Siamac Fazli, Claudia Sannelli, Stefan Haufe, Cecilia Maeder, Lenny
Ramsey, Irene Sturm, Gabriel Curio and Klaus-Robert Müller (available on
http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00198/full is
an overview with many references about the various uses of BCI: the overview
includes:

• the importance of dry electrodes to make EEG easily usable, with ref-
erences to studies about their measure quality

• theproblem of training and the possibilities to avoid it, for example
with large pattern databases

• the use of BCI to understand the mental state, for example the atten-
tion level, the incoming sleep

• BCI in entertainment, with examples of use in “fast reaction” games,
such as pinball machines

The article “NeuroPhone: Brain-Mobile Phone Interface using a
Wireless EEG Headset”, by Andrew T. Campbell, Tanzeem Choudhury,
Shaohan Hu, Hong Lu, Matthew K. Mukerjee, Mashfiqui Rabbi, and Rajeev
D. S. Raizada (http://sensorlab.cs.dartmouth.edu/pubs/neurophone.pdf)is
an overview of an implementation of P300 on iPhone using the Emotiv Epoc
as headset: the implementation uses a Windows PC as data bridge from the
headset to the iPhone.

A description of the OpenVibe framework in present in “OpenViBE:
An Open-Source Software Platform to Design, Test and Use Brain-

7

http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00198/full
http://sensorlab.cs.dartmouth.edu/pubs/neurophone.pdf

8

Computer Interfaces in Real and Virtual Environments” availabe at
http://www.hal.inserm.fr/docs/00/47/71/53/PDF/Renard et al 2010 draft.pdf

The thesis “Adaptive Computer Interfaces” by D. Ward is a 2001
work (http://www.inference.phy.cam.ac.uk/djw30/papers/thesis.pdf), submit-
ted in candidature for the degree of Doctor of Philosophy, at the Univer-
sity of Cambridge, and exploring predictive tecniques to mare data input
faster, in particular, it is exposed the research about the Dasher input sys-
tem (http://www.inference.phy.cam.ac.uk/dasher/).

A tactile P300 brain-computer interface http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00019/full
show the possibility to record P300 potentials evoked by tactile stimulation.

A simple format for exchange of digitized polygraphic record-
ings: the paper proposing EDF format.

A “Turing Test” and BCI for locked-in children and adults a
proposed test to use evoked potential with childen and locked in persons. A
stimulation based on YES/NO (as a variant of different sounds’ types)

Open vocabulary language modeling for binary response typing
interfaces by Brian Roark: predictive text input.

BCI — Technical report

http://www.hal.inserm.fr/docs/00/47/71/53/PDF/Renard_et_al_2010_draft.pdf
http://www.inference.phy.cam.ac.uk/djw30/papers/thesis.pdf
http://www.inference.phy.cam.ac.uk/dasher/
http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00019/full

Chapter 3

Emotiv Epoc

The Emotiv is the first device we will exploit: is has an affordable price
(from 300$ - just the device - to 750$ for a Research Development Kit) and
makes 14 data channels available. Here an interesting demo on the device:
http://www.ted.com/talks/lang/eng/tan le a headset that reads your brainwaves.html

There are other devices, such as the PlxWave: the idea is to design the
software in such a way as it will be easy to change acquiring device, both to
be able to use future headset, when they will be available, and to compare the
various devices, or even to just give a more economically affordable solution,
if available, and if the reached control capacity will be sufficient.

3.1 Technical infos

The Emotiv Epoc (with the Research SDK) gives the following features (from
http://emotiv.com):

• 14 channel (plus CMS/DRL references, P3/P4 locations) high res-
olution, neuro-signal acquisition and processing wireless neurohead-
set. Channel names based on the International 10-20 locations are:
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 (see
http://www.bem.fi/book/13/13.htm)

This is what the hardware gives, but, depending on the official SDK used,
not everything can be available. The research SDK gives:

• real-time display of the Emotiv headset data stream, including EEG,
contact quality, FFT, gyro (if fitted, custom option), wireless packet
acquisition/loss display, marker events, headset battery level

9

http://www.ted.com/talks/lang/eng/tan_le_a_headset_that_reads_your_brainwaves.html
http://emotiv.com
http://www.bem.fi/book/13/13.htm

10 3.1. TECHNICAL INFOS

• record and replay files in binary EEGLAB format1. Command line file
converter included to produce .csv format.

The Emotiv communicates with PC via a ultra low power Bluetooth inter-
face (to use less battery): there can be some communication problems if the
headset and the receiver are not in the optimal position (the nearest, the best
:-) http://www.emotiv.com/forum/messages/forum4/topic484/message2659/?phrase id=158643#message2659

3.1.1 From Emotiv forum

A little about the electronics in the headset?

08.04.11 9:17 PM

Hi Alon, in case you don’t have access to the Research forum, I

collected a couple of references and repeat them below. Otherwise,

search for filtering, IIR, CMS, impedance, common mode etc to get all

forum posts on this topic.

The referencing system defines the electrical ground point for the

measurement of all the other sensors - we effectively measure the

voltage difference between the left-hand reference point and every

other sensor. The right-hand reference is a standard feed-forward

reference compensation electrode which allows the headset electronics

to ride on top of changes in body potential - for example electrical

pickup from lights, power circuits, transformers and so on, which

change drastically as you move around the room. The left-hand

reference is called CMS and the right-hand reference is called DRL

(driven right leg smile:)) after the original use in high-resolution

ECG systems where it was traditionally attached to the right leg of

the patient. Two-point referencing is very common in expensive medical

grade EEG and ECG systems. We use it on the EPOC becuase it seriously

cuts out the noise (by about 55dB at mains frequencies for the

tech-heads out there). We don’t actually measure those points

individually and send the data to the PC. CMS would be pretty boring -

the difference between CMS and itself is a pretty dull looking signal.

We also added a little extra (patented) trick to the conventional DRL

circuit - we use it to help measure the contact quality at every other

sensor by adding a smal additional modulation to the feedforward

signal, and reading the magnitude of that signal back from each other

channel. This is converted into the nice green/yellow/orange/red/black

contact quality map. If nobody is receiving, the references are shown

BCI — Technical report

http://www.emotiv.com/forum/messages/forum4/topic484/message2659/?phrase_id=158643#message2659

3.1. TECHNICAL INFOS 11

as black. If any other channel is receiving, they show as green.

We have applied some filtering in the hardware and firmware to remove

mains frequency interference. The signals are collected through a C-R

high-pass hardawre filter (0.16Hz cutoff), preamplified and low-pass

filtered at 83Hz cutoff. Data is also processed in the headset as

follows: raw ADC collection rate is 2048 /sec / channel. This data is

filtered using a 5th-order sinc filter to notch out 50Hz and 60Hz,

low-pass filtered and down-sampled to 128/sec/channel to eliminate

mains harmonics. No further processsing is done - the effective

bandwidth is 0.16-43Hz

about the algorithm of Emotiv

10.07.11 8:23 PM

Hi Zhang,

I can’t send you any more details than I can publish on the user

forum, which is as follows: Each detection suite is slightly

different.

Some facial expressions (blinks, winks, eye movements) depend on

pattern matching in real time, for example blinks are characterised

by coherent rising pulse shapes on several frontal sensors which

correspond to a specific wave shape and risetime, followed by a

fall. These signals are balanced against rear channels which must not

show the same trace shapes. The blink is flagged after the signals

have passed through a specific profile matching algorithm,

approximately 100ms after commencement of the blink. The sensitivity

slider adjusts a threshold for the fitting algorithm and may also

scale the signals to better match the profile.

Other facial expressions depend on the distribution and relative

strength of several frequency bands across many channels. These

signals are processed to yield specific features by analysing a

trailing sample of data (allowing frequency extraction) and are

passed to a classifier every 0.25 seconds.

Affectiv detections also depend on the distribution and relative

intensity of specific frequency bands, as well as some custom

features based on fractal signal analysis. These are passed to a

classifier system to detect specific deflections, low-pass filtered

BCI — Technical report

12 3.2. SOFTWARE INTERFACE

and the outputs are self-scaled to adjust to each user’s range of

emotion.

Cognitiv detections are trained in-situ. Neutral data and the actions

in question are trained (possibly repeatedly) and the training data

is segmented into short data epochs. We extract a large number of

features including spectral and other measurements and apply a

feature reduction method to provide a parsimonious model which is

used to clasify states in real time using the reduced feature

set. The features and sensors chosen for Cognitiv are unique to each

user signature. We also apply some corrections to the background

state to allow for different fittings, moods, contact quality and

detected noise patterns.

3.2 Software interface

Emotiv Epoc sends to the host a stream of encrypted data: the interface is
not open, but some reverse engineering work has been accomplished to use
it: information can be found at Emokit project.

By the way, in the same discussion there’s a reference to the following pa-
per: http://sensorlab.cs.dartmouth.edu/pubs/neurophone.pdf, saying: “The
headset transmits encrypted data wirelessly to a Windows-based machine;
the wireless chip is proprietary and operates in the same frequency range as
802.11 (2.4Ghz)”. This means that the receiver is not a standard Bluetooth
device (i.e. we cannot use directly a smartphone do receive data) but we
need the provided Emotiv dongle.

The headset samples all channels at 128Hz, each sample being a 14 bit
value corresponding to the voltage of a single electrode.

3.3 Emokit

A project started by Cody Brocious, http://daeken.com/emokit-hacking-the-
emotiv-epoc-brain-computer-0, available at http://github.com/qdot/emokit.
This project is now included in http://www.openyou.org/libs/.

Emokit has C and Python interfaces which allow to access raw EEG data
from the Emotiv EPOC on Windows, Linux, and OS X.

Emotiv comunicates using a USB dongle: it’s a USB device with VID=21A1,
PID=0001 (note: from walking through the device enum code in the EDK,
it seems that PID=0002 might be the development headset, but that’s to-

BCI — Technical report

http://sensorlab.cs.dartmouth.edu/pubs/neurophone.pdf
http://daeken.com/emokit-hacking-the-emotiv-epoc-brain-computer-0
http://daeken.com/emokit-hacking-the-emotiv-epoc-brain-computer-0
http://github.com/qdot/emokit
http://www.openyou.org/libs/

3.4. OPENVIBE 13

tally unverified). It presents two HID interfaces, “EPOC BCI” and “Brain
Waves”. Reading data off the “Brain Waves” interface gives you reports of
32 bytes at a time; “EPOC BCI” is not clear what is.

The data is crypted, with 128-bit AES in ECB mode, block size of 16
bytes: the found key was: 31003554381037423100354838003750.

The first byte of each report is a counter that goes from 0-127 then to
233, then cycles back to 0. The X coord from the gyro is byte 29 and the Y
coord is byte 30. The EPOC has some sort of logic in it to reset the gyro
baseline levels, the baseline generally (not perfect) is roughly 102 for X and
204 for Y.

If you assume that each sensor is represented by 2 bytes of data, that
gives us 28 bytes for sensor data. 32 - 28 == 4, so what’s the extra byte?
Looking at byte 15, it’s pretty clear that it’s (almost) always zero – the only
time it’s non-zero is the very first report from the device.

According to some data on the research SDK, there’re 2 bits per sensor
that give you the signal quality (0=none, 1=very poor, 2=poor, 3=decent,
4=good, 5=very good).

Packet structure is:

struct epoc_contact_quality {

char F3, FC6, P7, T8, F7, F8, T7, P8, AF4, F4, AF3, O2, O1, FC5;

};

struct epoc_frame {

int F3, FC6, P7, T8, F7, F8, T7, P8, AF4, F4, AF3, O2, O1, FC5;

struct epoc_contact_quality cq;

char gyroX, gyroY;

char battery;

};

3.4 OpenVibe

From EEG raw data to meaningful information we need some elaboration:
OpenVibe http://openvibe.inria.fr/ is a general Brain Computer Interface.
It’s not the only one; the paper which describes it http://www.hal.inserm.fr/docs/00/47/71/53/PDF/Renard et al 2010 draft.pdf
reports some link about other interfaces too.

BCI — Technical report

http://openvibe.inria.fr/
http://www.hal.inserm.fr/docs/00/47/71/53/PDF/Renard_et_al_2010_draft.pdf

14 3.5. APPLICATIONS

3.5 Applications

http://www.nanotechgalaxy.com/braintalk/ An application to simulate a key-
board.

3.6 Roadmap

Preliminary work:

• acquire EE (Emotiv Epoc) data on PC via Emokit: should be
as easy as running the demo ... but sometimes there are troubles with
the decryption key!

• acquire EE (Emotiv Epoc) data on Android via Emokit: this
needs a porting to Android platform, in particular, verify the Android
API for Bluetooth Input.

• test EE and OpenVibe on Windows/Linux with official SDK:
this should be a plain task. Emotiv is officially supported on Windows,
while on Linux there’s a beta SDK (probably it can be asked by a SKD
license holder)

• write an acquisition server/driver for OpenVibe on Linux us-
ing Emokit: the server building is documented. Interfacing Emokit
to the server should be a work of “data structure adaptation”

• write an acquisition server/driver for OpenVibe on Android
using Emokit: the porting of the previous work on Android.

• run OpenVibe on Android (?): OpenViBE is an analizying tool.
Is it better to port OpenViBE on Android or take from OpenViBE the
relavant algorithms and implement on Android? (Probably this last
option is better!)

• identify 2/3 signals which a user can control (x/y axis, click):
this can be done on OpenViBE on Linux/Windows. When we have
meaningful data, we can try to duplicate them on Android

• interface those signal to I/O methods: to simulate mouse/joystick
moving.

• USE I/O FOR MIND CONTROLLED INPUT!: and now ...
the work can start! use the previous software to realize something!

BCI — Technical report

http://www.nanotechgalaxy.com/braintalk/

3.6. ROADMAP 15

Application work:

• I/O test: an application that moves a ball around (to test ... and to
show as demo!)

• Porting of Dasher: http://www.inference.phy.cam.ac.uk/dasher/DasherSummary.html
an efficient alternative input method, to Android

• Interface Dasher to mind controlled I/O

Specific for Android:

• Raw data acquisition

– Bluetooth I/O API

– USB I/O API (should not be needed - Emotiv send data via Blue-
tooth with a USB dongle: it should be possible to read directly
the Bluetooth stream)

– porting of Emokit to decode data

– implement some API to access raw data

– implement a data server (could be the OpenViBE acquisition
server). This is an alternative to the previous point: to verify
which is the best solution

– while doing this, do think about having the same tools (API or
server or both) to acquire data from different devices (Emotiv
Epoc, PlxWave, Dummy1)

– implement a “store raw data” and a “read stored data” to be used
thru’ a DummyDevice (for test of upper layer)

• Raw data elaboration. OpenViBE is a EEG data elaboration tools, but
quite a big framework to implement on Android. The idea could be to
test the data elaboration on PC and to implement in Android only the
relevant parts. OpenViBE core is a data analysis tool, based on IT++:
it could be interesting implement IT++ (or part of it) on Android.
IT++ has other dependencies such as FFTW, BLAS, LAPACK.

The package to port to Android are the following: these steps are to
verify (i.e. verify if they are really necessary)

– FFTW

– BLAS

BCI — Technical report

http://www.inference.phy.cam.ac.uk/dasher/DasherSummary.html

16 3.6. ROADMAP

– LAPACK

• Output of relevant parameter: the final result should be some (2/3/4/5)
parameters. The ideal would be to have

– 2 analogic signal for x/y axis

– 1 click signal to select

• interface this parameter to Android I/O structure to simulate a joystick

BCI — Technical report

Chapter 4

Hands on tests!

4.1 Hardware connection

The initial test on the Emotiv Epoc are quite interesting:

• the comunication channel is NOT Bluetooth: it uses a http://www.nordicsemi.com/
chip - a ultra low power device implementing a wireless communication
on 2.4GHz. From the practical point of view, the Emotiv Epoc cannot
be accessed directly by a smartphone via Bluetooth

• the comunication Epoc/smartphone could be done:

– using a dedicated device from Emotiv: they seem interested in
selling such a device, but at the moment nothing is available.

– using a wireless hub: http://http://www.iogear.com/product/GUWH104KIT/.
This could be used in the configuration headset - dedicated usb
dongle - wireless hub - smarthphone. The problem is the driver,
not available in smartphone.

– using a PC as bridge (in the PC there would be the EPOC driver)

– using an embedded solution: a small factor/mini/micro PC with a
USB host, a Bluetooth dongle and a stripped down Linux. There’s
the Epoc driver problem.

4.2 Primary data reading

Data sent by the Epoc is crypted, but it is present a software to read it:
http://github.com/qdot/emokit

17

http://www.nordicsemi.com/
http://http://www.iogear.com/product/GUWH104KIT/
http://github.com/qdot/emokit

18 4.2. PRIMARY DATA READING

It is available a Python software to read the primary data, using 3 possible
decrypting keys: the correct one for the available consumer key under test is
another one, extra1 key

consumer_key = ’\x31\x00\x35\x54\x38\x10\x37\x42\x31\x00\x35\x48\x38\x00\x37\x50’

research_key = ’\x31\x00\x39\x54\x38\x10\x37\x42\x31\x00\x39\x48\x38\x00\x37\x50’

special_key = ’\x31\x00\x35\x48\x31\x00\x35\x54\x38\x10\x37\x42\x38\x00\x37\x50’

extra1_key = ’\x4D\x00\x47\x54\x38\x10\x31\x42\x4D\x00\x47\x48\x38\x00\x31\x50’

found at http://github.com/qdot/emokit/issues/4.
The procedure used to get that key was the following (as reported in the

forum):

Here is detailed howto for figuring my consumer key:

- Download OllyDbg http://www.ollydbg.de/

- Download SnD Crypto Scanner

(http://www.woodmann.com/collaborative/tools/

index.php/SnD_Crypto_Scanner_%28Olly/Immunity_Plugin%29)

and copy OllyCScan to Olly directory (version 0.4b)

- Run OllyDbg

- Open F3 EmotivControlPanel.exe (do not run debugging yet)

- Run OllyDbg plugin -> SnD Crypto Scanner

- Perform Scan

- MD5, Rijndael (Sig 1) and Rijndael (Sig 2) should be found

- Keep SnD Crypto Scanner Window open

- Run debugging of EmotivControlPanel.exe (F9)

- EmotivControlPanel should completely start, display window

with brain and be receiving data

- no need to have headset properly positioned

- Switch to SnDCrypto Scanner window

- Click on Rijndael (Sig 2) then on line in lower window

(Signature e1f898...), then click Set Hardware Breakpoint

- Debugger should almost immediately break at some instruction

(e.g., SHL EDX,8)

- Scroll up until sequence of INT3 opcodes is found

- Put breakpoint (F2) to first instruction below INT3 sequence -

this is the start of function manipulating key

we now have begin of the function manipulating with epoc key

you may remove hardware breakpoints now (will break on normal

breakpoint at the beginning of this function)

- Resume debugging (F9)

should break almost immediately

BCI — Technical report

http://github.com/qdot/emokit/issues/4

4.2. PRIMARY DATA READING 19

- step over (F8) unless first CALL instruction is found

- step into (F7)

this function is strange, doing memset on NULL param and free

(NOT what we are searching for)

- continue (F8) to second CALL instruction

- step into (F7), you should see memcpy and memset calls

disassembled in OllyDbg window

- step to part where memcpy function arguments are prepared

(PUSH instruction)

- n should be equal to 0x10 (16B) - number of bytes in eopc key

- src should point to buffer with epoc key

- read buffer address (OllyDbg will show that or see value of

corresponding PUSH parameter)

- switch to Memory dump window, RClick->Goto->Expression

- type buffer address (or parameter of PUSH)

- read epoc key (16 bytes) from Memory dump window

{0x4D,0x00,0x47,0x54,0x38,0x10,0x31,0x42,0x4D,0x00,

0x47,0x48,0x38,0x00,0x31,0x50};

- Insert your headset key into Emokit software

(https://github.com/qdot/emokit)

- Change last parameter of epoc_open to 1 instead of 0

(epoc_open(d, EPOC_VID, EPOC_PID, 1)) in main()

The used program is almost the standard Emokit: just added the new
decryption key on emotiv.py, while the test program has been rewritten as
rawread.py:

#!/usr/bin/python

import sys, time, logging

from emotiv import Emotiv

emotiv = None

def main(debug=False):

print ’Starting MAIN’

while True:

for packet in emotiv.dequeue():

print ’{0:4d},{2:4d},{3:4d},{4:4d},{5:4d},\

{6:4d},{7:4d},{8:4d},{9:4d},{10:4d},{11:4d},{12:4d},{13:4d},{14:4d},\

{15:4d},{16:4d},{17:4d};’.format(packet.counter, packet.sync,

packet.gyroX, packet.gyroY,

packet.F3[0], packet.FC6[0],

BCI — Technical report

20 4.2. PRIMARY DATA READING

packet.P7[0], packet.T8[0],

packet.F7[0], packet.F8[0],

packet.T7[0], packet.P8[0],

packet.AF4[0], packet.F4[0],

packet.AF3[0], packet.O2[0],

packet.O1[0], packet.FC5[0])

#sys.stdout.flush()

#time.sleep(1.0/128.0)

try:

logger = logging.getLogger(’emotiv’)

logger.setLevel(logging.INFO)

log_handler = logging.StreamHandler()

logger.addHandler(log_handler)

emotiv = Emotiv()

main(*sys.argv[1:])

finally:

if emotiv:

emotiv.close()

To use it on MacOSX:, first of all the Linux lsusb command is the
following:

~ $ system_profiler SPUSBDataType

...

EPOC BCI:

Product ID: 0x0001

Vendor ID: 0x21a1

Version: 0.03

Serial Number: SN201105230918GM

Speed: Up to 12 Mb/sec

Manufacturer: Emotiv Systems Inc.

Location ID: 0x04100000 / 4

Current Available (mA): 500

Current Required (mA): 100

then the python program expects to find a /dev/hidraw? device: it is a
HID raw driver (http://http://lxr.free-electrons.com/source/drivers/hid/hidraw.c)
which:

/*

BCI — Technical report

http://http://lxr.free-electrons.com/source/drivers/hid/hidraw.c

4.3. AN OPEN SERVER 21

* HID raw devices, giving access to raw HID events.

*

* In comparison to hiddev, this device does not process the

* hid events at all (no parsing, no lookups). This lets applications

* to work on raw hid events as they want to, and avoids a need to

* use a transport-specific userspace libhid/libusb libraries.

*

* Copyright (c) 2007 Jiri Kosina

*/

4.3 An open server

Emotiv Epoc data could be used from various software, such as OpenVIBE:
it could be interesting to prepare a daemon sending data on a socket.

At the moment, for testing purposes, we can use the python program,
sending the data in plain ASCII (values separated by ’,’, line terminated by
’;’) to standard output, combined with the nc tool (netcat) to pipe the data
to a socket.

This app can be used to read data from a socket: http://giammy.com/eegview

4.4 OpenVIBE test

First considerations:

• OpenVIBE must be compiled from sources for Linux

• Epoc driver is available only for Windows, needs the Emotiv SDK and
must be compiled

• OpenVIBE can read data from a socket :-)

Compilation of OpenVIBE on Ubuntu 11.04:

• linux-install dependencies

• linux-init env command

• linux-build

BCI — Technical report

http://giammy.com/eegview

22 4.5. TEST: EVOKED POTENTIAL

4.5 Test: Evoked potential

The test (Audio evoked potential) has been accomplished on 2011.10.14, with
the Emotiv Epoc headset. The setup includes:

• patient with Emotiv Epoc

• acquisition on a Linux box via a Python program (variation of the one
included in the EmoKIT)

The acquisition runs continuously while the software emits 2 100ms beeps
(200Hz and 4000Hz frequency), every 1-3 seconds (the variation of the inter-
val length is random).

Whenever a sound must be emitted, the low frequency one is chosen with
probability 0.2.

The subject was sitting on his chair, closed eyes, mentally counting the
low frequency beeps.

The program is the following:

#!/usr/bin/python

import sys, time, logging, random

from emotiv import Emotiv

try:

import winsound

except ImportError:

import os

def playSound(frequency,duration):

#apt-get install beep

os.system(’beep -f %s -l %s &’ % (frequency,duration))

else:

def playSound(frequency,duration):

winsound.Beep(frequency,duration)

#Freq = 2500 # Set Frequency To 2500 Hertz

#Dur = 1000 # Set Duration To 1000 ms == 1 second

#playSound(Freq,Dur)

emotiv = None

#

Configure test

BCI — Technical report

4.5. TEST: EVOKED POTENTIAL 23

#

hz = 128 # device acquisition frequency as integer

hzf = 128.0 # ... and the same as float

frequency in Hz

lowFreq = 200 # frequency of low frequency sound

highFreq = 4000 # frequency of high frequency sound

duration in ms of the two sounds

lowFreqSoundDurationMs = 100

highFreqSoundDurationMs = 100

interval between 2 sound (a random value included in the range)

timeBetweenSoundMinMs = 1000

timeBetweenSoundMaxMs = 3000

percent: 0.2 -> 20% low frequency sounds, 80% high frequency sounds

lowFreqSoundPercent = 0.2

#

End of configure

#

timeBetweenSoundDeltaMs = timeBetweenSoundMaxMs - timeBetweenSoundMinMs

#

Real end of Configure

#

showQuality = 0

currentFrequency = 0

currentTime = 0.0

currentSample = 0

nextSoundSample = 1*hz # first sound after 1s

stopSoundSample = 0

def isLowFreq():

global lowFreqSoundPercent

if random.random() < lowFreqSoundPercent:

return True

else:

BCI — Technical report

24 4.5. TEST: EVOKED POTENTIAL

return False

def ms2samples(ms):

global hzf

return int(hzf * float(ms) / 1000.0)

def samples2ms(s):

global hzf

return int(1000.0 * float(s) / hzf)

def checkSound():

global currentSample

global nextSoundSample

global currentFrequency

global lowFreq

global highFreq

global lowFreqSoundDurationMs

global highFreqSoundDurationMs

global timeBetweenSoundMinMs

global timeBetweenSoundDeltaMs

global stopSoundSample

if currentSample > nextSoundSample:

if isLowFreq():

currentFrequency = lowFreq

soundDurationMs = lowFreqSoundDurationMs

else:

currentFrequency = highFreq

soundDurationMs = highFreqSoundDurationMs

playSound(currentFrequency, soundDurationMs)

nextSoundSample = currentSample +

ms2samples((timeBetweenSoundMinMs +

random.randint(0, timeBetweenSoundDeltaMs)))

stopSoundSample = currentSample + ms2samples(soundDurationMs)

if currentSample > stopSoundSample:

currentFrequency = 0

def main(debug=False):

global currentSample

global currentTime

global currentFrequency

global showQuality

global hzf

BCI — Technical report

4.5. TEST: EVOKED POTENTIAL 25

print ’Starting MAIN’

if showQuality == 0:

formatString = ’{34:10d} {36:5d} {0:5d} {2:5d} {4:5d} \

{6:5d} {8:5d} {10:5d} {12:5d} \

{14:5d} {16:5d} {18:5d} {20:5d} \

{22:5d} {24:5d} {26:5d} {28:5d} \

{30:5d} {32:5d} ;’

print ’# f(Hz) C giroX giroY F3 FC6 P7 T8 F7 F8 T7 P8 AF4 F4 AF3 O2 O1 FC5’

else:

formatString = ’{0:4d},{2:4d},{3:1d},{4:4d},{5:1d},\

{6:4d},{7:1d},{8:4d},{9:1d},{10:4d},{11:1d},{12:4d},{13:1d},\

{14:4d},{15:1d},{16:4d},{17:1d},{18:4d},{19:1d},{20:4d},{21:1d},\

{22:4d},{23:1d},{24:4d},{25:1d},{26:4d},{27:1d},{28:4d},{29:1d},\

{30:4d},{31:1d},{32:4d},{33:1d};’

while True:

for packet in emotiv.dequeue():

currentSample = currentSample + 1

currentTime = (1000.0*float(currentSample))/hzf

checkSound()

print formatString.format(packet.counter, packet.sync,

packet.gyroX[0], 4,

packet.gyroY[0], 4,

packet.F3[0], packet.F3[1],

packet.FC6[0], packet.FC6[1],

packet.P7[0], packet.P7[1],

packet.T8[0], packet.T8[1],

packet.F7[0], packet.F7[1],

packet.F8[0], packet.F8[1],

packet.T7[0], packet.T7[1],

packet.P8[0], packet.P8[1],

packet.AF4[0], packet.AF4[1],

packet.F4[0], packet.F4[1],

packet.AF3[0], packet.AF3[1],

packet.O2[0], packet.O2[1],

packet.O1[0], packet.O1[1],

packet.FC5[0], packet.FC5[1],

currentSample, currentTime, currentFrequency)

#sys.stdout.flush()

#time.sleep(1.0/128.0)

try:

logger = logging.getLogger(’emotiv’)

BCI — Technical report

26 4.6. EMOTIV TO OPENVIBE AND EEGLAB

logger.setLevel(logging.INFO)

log_handler = logging.StreamHandler()

logger.addHandler(log_handler)

emotiv = Emotiv()

main(*sys.argv[1:])

finally:

if emotiv:

emotiv.close()

4.6 Emotiv to OpenVibe and EEGLab

Here we present some ideas and tools to connect the Emotiv EPOC to some
elaboration frameworks: the headset comes in a consumer/developer/research
edition, but we are interested in Open Source elaboration tools, so we suppose
to have just the raw data in a ASCII file.

4.6.1 Getting the Emotiv EPOC raw data

This is the initial step which must be accomplished to start the work. There
are 2 possibilities:

• use the Emotiv EPOC Research Edition and the given framework

• use the Emokit tools to acquire the data

When raw data is available, we can store it in an ASCII file, one ac-
quisition for line, each line being the sequence of acquired samples. We do
not use a more definite format, as these notes are not an out-of-the-box
solution: we just give the basic ideas to test the various solutions.

4.6.2 From raw data to OpenVibe

OpenVibe is a very flexible tool to analyze EEG data, in particular it supports
various input mode. The one we are exploiting is the Generic Raw Telnet
Reader with the following configuration:

• Generic Raw Telnet Reader

• Number of channels: 16

• Sampling Frequency: 128

• port 1337

BCI — Technical report

4.6. EMOTIV TO OPENVIBE AND EEGLAB 27

Figure 4.1: An EEG from Emotiv EPOC acquired on OpenVibe

• Limit speed - checked

• Little endian

• 16 bits unsigned integer

• Header size: 0

• Inter frame size: 0

We need to start the acquisition server (one of the modules of Open-
Vibe: dist/ov-acquisition-server.sh), select the Generic Raw Telnet
Reader and set the given options.

After this we run a scenario in OpenVibe Designer dist/ov-designer.sh:
the scenario used for this test includes just the acquisition box and a graph-
ical widget to see the data in realtime.

Having OpenVibe up and running, the Emotiv EPOC ASCII raw data is
piped to the a2b tool which just takes the input stream as ASCII numbers

BCI — Technical report

28 4.6. EMOTIV TO OPENVIBE AND EEGLAB

and transform it in a binary output stream (16 bit unsigned integers, little
endian - as defined in the acquisition server) The source is the following:

#include <stdio.h>

// ./a2b | nc -l 1337

//

// Run acquisition driver for Emotiv EPOC:

// ./produceASCIIoutput.py | ./a2b | nc -l 1337

//

// Run OpenVibe acquisition server

// t60/openvibe-0.11.0-svn3052-src/dist$./ov-acquisition-server.sh

// Configuration:

// Generic Raw Telnet Reader

// Number of channels: 16

// Sampling Frequency: 128

// port 1337

// Limit speed - checke (cos’e’?)

// Little endian

// 16 bits unsigned integer

// Header size 0

// Inter frame size 0

//

// Run OpenVibe designer

// ./ov-designer-gmy.sh

// with scenario: t60/gmy-test1.xml

//

#define LINE_SIZE 256

#define NCH 16

#define LO(x) ((unsigned char)((x)&0xff))

#define HI(x) ((unsigned char)(((x)>>8)&0xff))

int main(int argc, char *argv[])

{

int i;

int ch[NCH];

char theLine[LINE_SIZE];

char *ret;

for (i=0; i<NCH; i++) {

ch[i] = 0;

}

BCI — Technical report

4.6. EMOTIV TO OPENVIBE AND EEGLAB 29

while ((ret = fgets(theLine, LINE_SIZE, stdin)) != 0) {

//printf("Read %d ’%s’\n", (int)ret, theLine);

sscanf(theLine, "%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",

&ch[0], &ch[1], &ch[2], &ch[3], &ch[4], &ch[5], &ch[6], &ch[7],

&ch[8], &ch[9], &ch[10], &ch[11], &ch[12],

&ch[13],&ch[14], &ch[15]);

for (i=0;i<NCH;i++) {

putchar(LO(ch[i]));

putchar(HI(ch[i]));

}

}

}

The tool sends data to the standard output: the network management is
done using the standard Linux tool nc (see a Linux manual for the details:
the command is named nc or netcat) which take the binary stream and
sends it to the socket 1337 (the one defined in the acquisition server).

At this point we use the Linux flexibility: as we use pipes to manage data,
the incoming stream can come from a file or from a running program doing a
realtime acquisition and sending data in realtime to standard output. In this
configuration we get a tool to acquire and visualize EEG data in realtime.
The next step is to prepare an elaboration scenario.

Working with the research edition you need to write a server in a Windows
machine, from there the connection to OpenVibe is the same (or use the
included OpenVibe driver for Emotiv Epoc).

4.6.3 From raw data to EEGLab

EEGLab is an Open source suite which runs in Matlab, for non realtime
EEG data elaboration: we proced to save on file an acquisition session, then
we convert it for EEGLab using EDF format.

In this case we are interested in recording some events (the instant of the
PC beep and it’s frequency, as we will need to identify evoked potentials.

Data is converted in EDF format with the following tool, which is just
a test program, not a program to use in the field as the header is manually
written in the code!

/*

Copyright 2011 Gianluca Moro - giangiammy@gmai.com - www.giammy.com

BCI — Technical report

30 4.6. EMOTIV TO OPENVIBE AND EEGLAB

This file is a2edf utility.

a2edf is free software: you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your

option) any later version.

a2edf is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with Foobar. If not, see http://www.gnu.org/licenses/.

*/

/*

An ASCII to EDF format converter

./a2edf <in >out.edf

THIS IS AN IMPLEMENTATION TO TEST THE FORMAT CONVERSION

AND THE EDF SPECIFICATION.

TO BE USED IN REAL APPLICATION THE SOURCE MUST BE MODIFIED!

The input file is an ASCII file, each line is a sequence of

17 integers, space separated representing the following type

of data:

Freq giroX giroY F3 FC6 P7 T8 F7 F8 T7 P8 AF4 F4 AF3 O2 O1 FC5

where Freq is the audio frequency emitted in that instant,

giroX and giroY are a giroscope input and the others are EEG sensors.

The header is built ad hoc, all the fields should be setted runtime,

in particular the

printf("%-8s", "324"); // TODO DATA number of data record

(see the note below)

References:

@article{

Kemp_Värri_Rosa_Nielsen_Gade_1992,

title={A simple format for exchange of digitized polygraphic recordings.},

BCI — Technical report

4.6. EMOTIV TO OPENVIBE AND EEGLAB 31

volume={82},

url={http://linkinghub.elsevier.com/retrieve/pii/0013469492900097},

number={5},

journal={Electroencephalography and Clinical Neurophysiology},

author={Kemp, B and Värri, A and Rosa, A C and Nielsen, K D and Gade, J},

year={1992},

pages={391--393}}

*** Note ***

The implementation has been checked with EDFbrowser

http://www.teuniz.net/edfbrowser/ but the field

"number of data record" accordingly to the paper

could be -1 (in my interpretation: read as many data

record as you find in the file), while EDFbrowser want

a real number of data record.

For the date/time format, the paper writes:

"startdate of recordlng (dd mn yy)" i.e. dd,mm and yy are

space separated, while EDFbrowser wants them point separated.

*/

#include <stdio.h>

#include <stdlib.h>

#define LINE_SIZE 256

#define NCH_IN 17

#define NCH 18 // event: 0=no sound, 1=low freq, 2=high freq

#define NSECPERRECORD 1

#define FREQ 128

short dataRecord[NCH][NSECPERRECORD*FREQ];

int currentDataRecordSamples = 0;

int eventCounter = 0;

#define LO(x) ((unsigned char)((x)&0xff))

#define HI(x) ((unsigned char)(((x)>>8)&0xff))

void printEDFHeader() {

int i;

// main header

BCI — Technical report

32 4.6. EMOTIV TO OPENVIBE AND EEGLAB

printf("%-8s", "0"); // version

printf("%-80s", "Giammy"); // TODO TEST local patient id

printf("%-80s", "Casa mia"); // TODO TEST local recordin id

printf("%-8s", "14.10.11"); // TODO TEST start recording date

printf("%-8s", "14.15.16"); // TODO TEST start recording time

printf("%-8d", 256+256*NCH); // header size: 256+ns*256

printf("%-44s", ""); // reserved

printf("%-8s", "324"); // TODO DATA number of data record

printf("%-8d", NSECPERRECORD); // duration of data record in seconds

printf("%-4d", NCH); // number of signals in data record

#define FOR_ALL for (i=0; i<NCH; i++)

// data header

printf("%-16s", "Freq"); // label

printf("%-16s", "giroX"); // label

printf("%-16s", "giroY"); // label

printf("%-16s", "F3"); // label

printf("%-16s", "FC6"); // label

printf("%-16s", "P7"); // label

printf("%-16s", "T8"); // label

printf("%-16s", "F7"); // label

printf("%-16s", "F8"); // label

printf("%-16s", "T7"); // label

printf("%-16s", "P8"); // label

printf("%-16s", "AF4"); // label

printf("%-16s", "F4"); // label

printf("%-16s", "AF3"); // label

printf("%-16s", "O2"); // label

printf("%-16s", "O1"); // label

printf("%-16s", "FC5"); // label

printf("%-16s", "FreqEvent"); // label

FOR_ALL {

printf("%-80s", "Transducer type");// transducer type

}

FOR_ALL {

if (i==0)

printf("%-8s", "Hz"); // physical dimens.

else

printf("%-8s", "raw"); // physical dimens.

}

FOR_ALL {

BCI — Technical report

4.6. EMOTIV TO OPENVIBE AND EEGLAB 33

switch (i) {

case 0:

printf("%-8s", "0"); // physical min

break;

default:

printf("%-8s", "-500"); // physical min

}

}

FOR_ALL {

switch (i) {

case 0:

printf("%-8s", "5000"); // physical max

break;

default:

printf("%-8s", "500"); // physical max

}

}

FOR_ALL {

switch (i) {

case 1:

case 2:

printf("%-8s", "-128"); // digital min

break;

default:

printf("%-8s", "0"); // digital min

}

}

FOR_ALL {

switch (i) {

case 1:

case 2:

printf("%-8s", "128"); // digital max

break;

default:

printf("%-8s", "16384"); // digital max

}

}

FOR_ALL {

printf("%-80s", "prefiltering"); // prefiltering

}

FOR_ALL {

printf("%-8d", FREQ); // number of samples per data record

}

BCI — Technical report

34 4.6. EMOTIV TO OPENVIBE AND EEGLAB

FOR_ALL {

printf("%-32s", ""); // reserved

}

}

int main(int argc, char *argv[])

{

int i,j;

int ch[NCH];

char theLine[LINE_SIZE];

char *ret;

int prevFreq = 0;

for (i=0; i<NCH; i++) {

ch[i] = 0;

}

printEDFHeader();

while ((ret = fgets(theLine, LINE_SIZE, stdin)) != 0) {

//printf("Read %d ’%s’\n", (int)ret, theLine);

sscanf(theLine, "%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",

&ch[0], &ch[1], &ch[2], &ch[3], &ch[4], &ch[5], &ch[6], &ch[7],

&ch[8], &ch[9], &ch[10], &ch[11], &ch[12],

&ch[13],&ch[14], &ch[15], &ch[16]);

// build ch[17], the event, from ch[0], the frequency

ch[17] = 0;

if (ch[0] != 0 && prevFreq == 0) {

ch[17] = ch[0];

++eventCounter;

}

prevFreq = ch[0];

for (i=0; i<NCH; i++)

dataRecord[i][currentDataRecordSamples] = ch[i];

++currentDataRecordSamples;

if (currentDataRecordSamples >= NSECPERRECORD*FREQ) {

for (i=0;i<NCH;i++) {

for (j=0;j<NSECPERRECORD*FREQ;j++) {

putchar(LO(dataRecord[i][j]));

putchar(HI(dataRecord[i][j]));

BCI — Technical report

4.6. EMOTIV TO OPENVIBE AND EEGLAB 35

Figure 4.2: An EEG from Emotiv EPOC acquired on EEGLab, with recorded
events

}

}

currentDataRecordSamples = 0;

}

}

printf("EventCounter=%d\n", eventCounter);

}

The program takes as input a raw ASCII EEG and produces an EDF file:
./a2edf <in >out.edf. In the output file a new signal is added, to code
the beep event, which is automatically recognized by EEGLab.

4.6.4 Conclusion: OpenVibe and EEGLab

The two proposed tools give us the possibility to have EEG data available in
OpenVibe or EEGLab. At the moment the scenario is:

BCI — Technical report

36 4.7. A FIRST MANUAL P300 ELABORATION

Figure 4.3: Graph of evoked potentials

1. getting the raw data from Emotiv EPOC via Research Edition SDK or
Emokit

2. store the data on file for post-elaboration

3. build a server and stream the data via socket in realtime

4. or both ... obviously!

5. for post-elaboration: convert the data file to EDF format and im-
port it in EEGLab (with informations about events - needed for evoked
potential rilevation)

6. in realtime: use OpenVibe to get data via Raw Telnet

The idea of having 2 different elaboration tools is that we will use the
one which will suit best to our needs. Other frameworks interfaces could be
tested in the future.

4.7 A first manual P300 elaboration

Referring to the Audio Evoked Potential test described in section 4.5, Test:
Evoked potential, we present a preliminary manual data analysis.

The test emitted high frequency sounds, with 33 low frequency sounds
(random rare events).

BCI — Technical report

4.7. A FIRST MANUAL P300 ELABORATION 37

The plotted signals are the resulting media of all the acquisitions corre-
sponding to the 2s interval around the rare events.

We report just the signal corresponding to F3, F4, AF3 (the position of
the sensors must be verified): in these signals the peak is more evident.

The rare event occurs at sample 128, while the peak occurs about 30
samples after (a quarter of second).

This seems to suggest that the Emotiv Epoc can record an evoked po-
tential, but is preliminary data and preliminary report: more test - and in
realtime configuration, must be done!

BCI — Technical report

38 4.7. A FIRST MANUAL P300 ELABORATION

BCI — Technical report

Chapter 5

Resources

• P300 speller Matlab code: http://asi.insa-rouen.fr/enseignants/ arako-
tom/code/bciindex.html

• A tool to read data from a socket on Android: http://giammy.com/eegview

• Initial tests for Bluetooth interface on Android: http://github.com/giammy/bscan

• Discussion Mailinglist: http://groups.google.com/group/medical-bci (email
address: medical-bci@googlegroups.com)

• Brain scanner on N900: http://milab.imm.dtu.dk/eeg

• Lego Mindstorm and Emotiv Epoc: http://www.youtube.com/watch?v=HLbly5rWPK0

• Mind control of a sculpture: http://brainstorms.puzzlebox.info/

5.0.1 Not strictly BCI

http://www.ofoa.net/applications/eagleeyes apply.cfm

39

http://asi.insa-rouen.fr/enseignants/~arakotom/code/bciindex.html
http://asi.insa-rouen.fr/enseignants/~arakotom/code/bciindex.html
http://giammy.com/eegview
http://github.com/giammy/bscan
http://groups.google.com/group/medical-bci
http://milab.imm.dtu.dk/eeg
http://www.youtube.com/watch?v=HLbly5rWPK0
http://brainstorms.puzzlebox.info/
http://www.ofoa.net/applications/eagleeyes_apply.cfm

40

BCI — Technical report

Chapter 6

Equipment

http://www.gtec.at/
http://www.micromed.eu/

41

http://www.gtec.at/
http://www.micromed.eu/

42

BCI — Technical report

Chapter 7

Tablets, Android, Kernel

7.1 ASUS TF101

PATH=$PATH:/home/giammy/Desktop/tf101/toolchain/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/

How to recompile Asus TF101 kernel

Main guide was taken from

http://forum.xda-developers.com/showthread.php?t=1197147

with some minor changes.

Now let’s try to recompile the android kernel. You will need some

packages not included in a default Ubuntu 11.04 installation:

sudo apt-get install git unrar libncurses5-dev qt3-dev-tools

Unrar and git are the only necessary packages. Install libncurses if

you want to modify the kernel configuration with the command line

menu. Otherwise, if you want a graphical interface, go with qt3.

Please refer to the documentation of your linux distro for help on how

to install additional packages. For the purpose of this guide we are

going to rebuild the official asus kernel with no modifications.

Download the latest kernel source from the ASUS site (atm 2.6.36.3)

wget http://dlcdnet.asus.com/pub/ASUS/EeePAD/TF101/Eee_PAD_TF101_Kernel_Code_8_4_4_11.rar

43

44 7.1. ASUS TF101

Now unpack it:

unrar e Eee_PAD_TF101_Kernel_Code_8_4_4_11.rar

tar xvfz kernel-3eb19ec-fix-lic.tar.gz

We need a config file for the compile process. The config file

essentially sets features ON or OFF from the final kernel (yes, I know

that is much more than this...). If your tablet is upgraded to the

latest build (8.4.4.11) you can extract the config file from your

running device:

adb pull /proc/config.gz ./

Now uncompress and move it into the kernel dir (renaming it in

.config).

gunzip config.gz

cp config kernel-3eb19ec/.config

We will need a compiler for the ARM platform. The android source

comes with the arm compiler. You can download it following these

instructions http://source.android.com/source/downloading.html .

Or we download only the prebuilt toolchain:

git clone git://android.git.kernel.org/platform/prebuilt.git

Mirrors are available at https://github.com/android

for example:

git clone https://android.googlesource.com/platform/prebuilt.git

After git completes the download, you will have a new directory called

"toolchain". We have to set some environment variables (assuming you

have downloaded the toolchain in your home directory):

export ARCH=arm

export CROSS_COMPILE=arm-eabi-

export PATH=$PATH:~/toolchain/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/

or (for MacOSX):

BCI — Technical report

7.2. VIA8560 45

export ARCH=arm

export CROSS_COMPILE=arm-eabi-

export PATH=$PATH:~/toolchain/prebuilt/darwin-x86/toolchain/arm-eabi-4.4.3/bin/

The compiler is installed and configured. It’s time to come back

to the kernel source. If you want to modify some settings in your

config file (!!AT YOUR OWN RISK!!) you can edit the .config file or

use a graphical interface.

cd kernel-3eb19ec

make xconfig (make menuconfig if you prefer a command-line menu)

Now we can compile the android kernel:

make -j4

Our new kernel is stored in : arch/arm/boot/zImage

We can use it for make a boot image and flash in our TF101:

use this guide

http://forum.xda-developers.com/showthread.php?t=1193737

7.2 VIA8560

Here we have some preparatory tests to connect the Emotiv to an Android
tablet. The tablet is the MID 7 - Via8650.

The device is:

cat cpuinfo

Processor : ARM926EJ-S rev 5 (v5l)

BogoMIPS : 797.97

Features : swp half thumb fastmult edsp java

CPU implementer : 0x41

CPU architecture: 5TEJ

CPU variant : 0x0

CPU part : 0x926

CPU revision : 5

BCI — Technical report

46 7.3. ARM TOOLCHAIN

Hardware : WMT

Revision : 0000

Serial : 0000000000000000

meminfo

MemTotal: 220764 kB

To recompile a kernel, you need the ARM toolchain and the kernel sources.

7.3 ARM toolchain

We will need a compiler for the arm platform. The android source comes
with the arm compiler. You can download it following this instructions
http://source.android.com/source/downloading.html . Or we download only
the prebuilt toolchain:

git clone git://android.git.kernel.org/platform/prebuilt.git
Mirrors are available at https://github.com/android for example:
git clone https://android.googlesource.com/platform/prebuilt.git
After git finishes his download, you will have a new directory called

”toolchain”. We have to set some environment variables (i assume you have
downloaded the toolchain in your home directory):

An example of environment variables setting for Linux is:

export ARCH=arm

export CROSS_COMPILE=arm-eabi-

export PATH=$PATH:~/toolchain/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/

7.4 Kernel sources

Finding tablet’s kernel sources is usually a mess, as not all the producer have
them available in their site.

As examples, the ASUS Transformer TF101 can be downloaded from the
ufficial site:

http://dlcdnet.asus.com/pub/ASUS/EeePAD/TF101/Eee_PAD_TF101_Kernel_Code_8_4_4_11.rar

while for the Via8650 we have the vendor official archive:

ftp://ftp.gpl-devices.org/pub/vendors/Wondermedia/WM8650/

the file is: KERNEL-DS ANDROID 2.6.32 WM8650.111209.1514.tgz

The configuration used for the compilation can (sometimes) be down-
loaded from the tablet:

BCI — Technical report

7.5. DEBIAN ON THE MID AND VIA8650 TABLET 47

adb pull /proc/config.gz ./

The compiler is installed and configured. It’s time to modify some settings
in your config file (!!AT YOUR OWN RISK!!) editing the .config file or use
a graphical interface.

cd kernel make xconfig (make menuconfig if you prefer a command-line
menu)

Now we can compile the android kernel with the command make: our new
kernel is stored in

arch/arm/boot/zImage

while the command make uImage produces:

arch/arm/boot/uImage

7.4.1 Tablet ROM update

This tablet has a modded ROM available here:
http://www.slatedroid.com/topic/18025-rom-universal-hybrid-honeycombmod-

uberoid-for-wm8650-devices-v130-w-video/
http://www.techknow.t0xic.nl/forum/index.php?action=forum
The package is Universal Uberoid WM8650 v10.1 www.TechKnowForum.net

http://www.mediafire.com/?z4nd3h85q0s65ok

The update procedure is well done: just put the new image on a SD, and
the tablet, when sees it, flash it! One way to proceed it to build an Uberoid
standard SD update card and then put our modification in it.

For the Uberoid ROM, the correct type to select is 11 (Via8650, MID 7)

7.5 Debian on the Mid and Via8650 tablet

It seems it can be done:
http://www.slatedroid.com/topic/23028-running-debian-on-wm8650/
with the following image:
http://www.filefactory.com/file/ce12c6b/n/debian wm8650 0.5.img.7z
You need a 4G (or more) SD card and just
dd if=theimage of=/dev/thecard

This is a kernel source for via8560:
https://gitorious.org/linux-on-via-vt8500/vt8500-kernel

The hardware support depends on the device: on the MID 7 the keyboard
does not work.

BCI — Technical report

48 7.5. DEBIAN ON THE MID AND VIA8650 TABLET

BCI — Technical report

Chapter 8

Acer Iconia A500 kernel
recompile

Acer Iconia A500 is a tablet based on Android whose interesting feature is
the standard USB port: this is valuable to connect an Emotiv EPOC device
to the tablet as it uses a USB dongle: a standard HID usb device, which can
be accessed via the standard linux /dev/hidraw driver.

The main problem with the tablet is that the HIDRAW support is not
compiled in the kernel. Here we see how to compile and install a custom
kernel on the Acer Iconia A500: the original kernel is: Linux version

2.6.36.3 (simba@lion) (gcc version 4.4.3 (GCC)) #1 SMP PREEMPT

Wed Jun 29 14:15:34 CST 2011

8.1 A500 and ClockworkMod ROM Manager

To work with the kernel is a good (almost mandatory, I would say) idea
to have a recovery tool such as the http://www.clockworkmod.com/ ROM
manager, which allow you to (from the ufficial description):

Must have app for any root user. Make backups, flash ROMs,

and own your device. ROM Manager is THE MUST HAVE APP for

any Android root user.

(Over 3 million downloads and counting!)

* Flash your recovery to the latest and greatest

ClockworkMod recovery.

* Manage your ROMs via a handy UI.

* Organize and perform backups and restores from within

Android!

* Install ROMs from your SD card.

49

http://www.clockworkmod.com/

50 8.2. KERNEL COMPILATION

* Install your favorite ROMs over the air!

The installation on the A500, with Android 3.1 installed (from the ufficial
update) is not very plain as this device is not supported. Anyway, from a
clean 3.1 update you need to use Acer Recovery Installer from Google market
http://www.addictivetips.com/mobile/install-clockworkmod-recovery-on-acer-
iconia-a500-honeycomb-tablet/ so:

• root the device

• install Acer Recovery installer from the market

• using the previous tool, you can install the ClockworkMod recovery

This is a good moment to STOP AND BACKUP ALL!
The ROM manager can be activated in Recovery mode: for the A500 you

need to push volume down and then push the power on. There will be a
menu with a lot of options, and the possibility to do a “Complete backup”.
Do it, try to recover from that backup, store it on a USB device, copy on
your PC ... do not lose it!

8.2 Kernel compilation

The first step is to download the ufficial kernel sources from the Acer site
http://http://us.acer.com/ac/en/US/content/drivers. At the time of writ-
ing (May, 2012) the kernel for version 3.1 had a missing Makefile, while the
kernel for 3.2 was complete. The kernel is configured via a .config file which
can be pulled from our device (the number is the A500 device UID):

~ $ adb devices

List of devices attached

280404443611197 device

~ $ adb pull /proc/config.gz config.gz

we will find a file congif.gz which can be expanded and moved as
.config in the root of the kernel source tree. The only modification we
need is to enable HIDRAW support: there should be some lines like:

CONFIG_HID_SUPPORT=y

CONFIG_HID=y

CONFIG_HIDRAW is not set

BCI — Technical report

http://www.addictivetips.com/mobile/install-clockworkmod-recovery-on-acer-iconia-a500-honeycomb-tablet/
http://www.addictivetips.com/mobile/install-clockworkmod-recovery-on-acer-iconia-a500-honeycomb-tablet/
http://http://us.acer.com/ac/en/US/content/drivers

8.3. ANDROID PARTITIONS’ STRUCTURE 51

the last line should be uncommented.
After this you need to recompile the kernel with the modified .config

file: the quick overview of the procedure is:

• you need a Linux box with development tools installed

• install the ARM cross compiler

• expand the kernel source to KERNEL DIR

• copy the modified .config to KERNEL DIR

• compile with something like:

#!/bin/bash

export ARCH=arm

export CROSS_COMPILE=arm-eabi-

export PATH=$PATH:/home/giammy/Desktop/toolchain/prebuilt/

linux-x86/toolchain/arm-eabi-4.4.3/bin/

#Our new kernel is stored in : arch/arm/boot/zImage

• the kernel will be in KERNEL DIR/arch/arm/boot/zImage

8.3 Android partitions’ structure

The partition map of Android can vary from device to device: some infos are
present in http://elinux.org/Android Fastboot, but the memory for the
A500 is mapped to /dev/block/mmcblk0pn with:

mmcblk0p1 recovery partition

mmcblk0p2 kernel, the place where the Linux kernel and RAM disk reside;

mmcblk0p3 base system;

mmcblk0p4 ...

mmcblk0p5 main file system;

mmcblk0p6 ...

mmcblk0p7 checksums of other partitions (follow explanations...)

BCI — Technical report

52 8.4. THE KERNEL AND ITS PARTITION

Here we work only in /dev/block/mmcblk0p2, where the kernel and RAM
disk are stored.

WARNING: if you use the wrong partition you can brick your
device. What I did, worked on my device: I do not know what will
happen to your device!

The kernel is located in the mmcblk0p2 partition, packed with the RAM
disk. To get the kernel you need to fetch the right partition: from the adb
shell just do:

$ adb shell

$ su

dd if=boot-mia.img of=/dev/block/mmcblk0p2

Note that you need a rooted device to access to the shell as root. Be
careful that the shell application will ask you on the tablet display the au-
thorization to become root, so, if you run the command without looking at
the tablet display (unlocked) you miss the request and cannot become root.

The command is the standard GNU/Linux dd command - see a Linux
manual for more info.

WARNING: if you give the wrong command you can brick your
device: do this only if you undersand what you are doing!

Note that the backup procedure, essentially copy all the partition in, more
or less this way.

8.4 The kernel and its partition

The kernel is stored in the partition 2, as we have seen, packed in a bi-
nary blob which we call boot.img with the RAM disk: to change the ker-
nel we need to unpack the original kernel, compile our new kernel, repack
it in a new boot.img. A description can be found here: http://android-
dls.com/wiki/index.php?title=HOWTO: Unpack%2C Edit%2C and Re-Pack Boot Images.

The tools used to unpack the boot image are split bootimg.pl: a perl
script referred to in the previous quoted wiki page, whose output is something
like:

perl split_bootimg.pl boot.img

Page size: 2048 (0x00000800)

Kernel size: 2962516 (0x002d3454)

Ramdisk size: 147895 (0x000241b7)

Second size: 0 (0x00000000)

Board name:

BCI — Technical report

http://android-dls.com/wiki/index.php?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images
http://android-dls.com/wiki/index.php?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images

8.4. THE KERNEL AND ITS PARTITION 53

Command line:

Writing boot-original-a500.img-kernel ... complete.

Writing boot-original-a500.img-ramdisk.gz ... complete.

and the two relevant files boot.img-kernel and boot.img-ramdisk.gz:
the first is the kernel and the second ... guess what!

At this point you need to repack the image with your kernel (at the
moment, we keep the same ramdisk): the tool for this operation is mkbootimg
with a command line as:

../mkbootimg --cmdline "nvmem=128M@384M mem=1024M@0M

vmalloc=256M video=tegrafb console=none

usbcore.old_scheme_first=1 lp0_vec=8192@0x1840c000

tegraboot=sdmmc gpt" --base 0x10000000

--kernel zImage --ramdisk boot.img-ramdisk.cpio.gz -o

output.img

be careful to the base address --base 0x10000000.
Now we need to reflash the new image to our device:
WARNING: IF YOU BRICK YOUR DEVICE DON’T BLAME

ME!
The command line to reflash is:

dd if=boot.img of=/dev/blobk/mmcblk0p2

At this point you could have bricked your device if the message you see
at the following boot is:

secure boot: image LNX fail

The problem is that A500 keeps all the checksums of the partitions on the
last partition, probably to stop people doing what we are doing, but this has
been documented in http://forum.xda-developers.com/showthread.php?t=1121543;
they say: “Checksums for all partitions are stored on mmcblk0p7. During
boot, the actual checksums for boot.img and recovery.img are calculated and
compared to the values stored in p7.” You need to download the itsmagic

tool and run it, or run this tool from the ClockworkMod recovery. What it
does is to write a blob of 16 bytes somewhere on partition 7: if this is not
clear to you, don’t worry - you are not alone - you just understand the reason
of its name: it’ s magic :-)

At this point, we can reboot the tablet and see other problems: it shows
the android logo and then it reboots and so on and so forth ... This behaviour
was fixed with Clockwork recovery resetting everything to factory default
(reset cache, dalvik cache, user data ...) As conclusion, the steps are:

BCI — Technical report

http://forum.xda-developers.com/showthread.php?t=1121543

54 8.5. ICONIA A500 AND EMOTIV EPOC

• get kernel source

• compile them with your modifications

• get the original boot image

• unpack, change kernel, and repack

• do a dd of the new image

• run itsmagic

• factory reset of everything

8.5 Iconia A500 and Emotiv EPOC

At this point, the result is that, connecting to the USB port, the Emotiv
Epoc Dongle, tha raw data is available on /dev/hidraw1. Now we need to
use it.

TODO: Note that the hidraw device is now supported but there is a
problem with the new kernel: at the moment the system tasks show the out-
put as “mirrored left to right”: we need to investigate this. Another problem
is that enabling wifi, resets the tablet: we think that we got the procedure
to ricompile the kenel, but we are missing some critical configuration!

BCI — Technical report

Chapter 9

References

Devices
http://www.emotiv.com/ A low cost - not as low as PlxWave, but with

more sensors, 5
http://www.gtec.at/ Guger technologies, 41
http://www.micromed.eu/ MicroMed, 41
http://www.neurosky.com/ a chip used by various producer, 5
http://www.plxwave.com/ A low cost device, 5
http://www.ted.com/talks/lang/eng/tan le a headset that reads your brainwaves.html

Emotiv demo, 9
discussion

http://www.emotiv.com/forum/messages/forum4/topic484/message2659/?phrase id=158643#message2659

Emotiv forum, 10
disease

http://en.wikipedia.org/wiki/Locked-in syndrome Locked in syn-
drome, 6

EEG
http://www.bem.fi/book/13/13.htm EEG theory, 9

emokit
http://daeken.com/emokit-hacking-the-emotiv-epoc-brain-computer-0

Emokit, 12
http://github.com/qdot/emokit interface to Emotiv Epoc, 12, 17

Emotiv
http://emotiv.com Emotiv official site, 9

Input
http://www.inference.phy.cam.ac.uk/dasher/DasherSummary.html

an interesting input method, 15

55

56 INDEX

http://www.nanotechgalaxy.com/braintalk/ an application to simu-
late a keyboard, 14

http://www.ofoa.net/applications/eagleeyes apply.cfm Control the
PC with your eyes, 39

News
http://brainstorms.puzzlebox.info/ Brain control of a sculpture, 39
http://milab.imm.dtu.dk/eeg Brain scanner on N900, 39
http://www.youtube.com/watch?v=HLbly5rWPK0 Lego Mindstorm and

Emotiv Epoc, 39

Papers
http://sensorlab.cs.dartmouth.edu/pubs/neurophone.pdf P300 with

the Emotiv Epoc on iPhone, 7, 12
http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00019/full

Tactile P300, 8
http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00198/full

Non medical uses of BCI, 7
http://www.hal.inserm.fr/docs/00/47/71/53/PDF/Renard et al 2010 draft.pdf

a paper describing OpenVibe, 8, 13
http://www.inference.phy.cam.ac.uk/djw30/papers/thesis.pdf A

study about Dasher, 8

References
http://android-dls.com/wiki/index.php?title=HOWTO: Unpack%2C Edit%2C and Re-Pack Boot Images

Boot image partition structure, 52
http://forum.xda-developers.com/showthread.php?t=1121543 xda-

developer site: itsmagic, 53
Resources

http://github.com/giammy/bscan Tool to scan Bluetooth devices on
Android, 39

http://groups.google.com/group/medical-bci Discussion mailing-list,
39

Software
http://asi.insa-rouen.fr/enseignants/ arakotom/code/bciindex.html

P300 Matlab code, 39
http://giammy.com/eegview An Android app to read data from a socket,

21, 39
http://http://us.acer.com/ac/en/US/content/drivers Acer kernel

sources, 50
http://openvibe.inria.fr/ a general Brain Computer Interface, 13

BCI — Technical report

INDEX 57

http://www.inference.phy.cam.ac.uk/dasher/ A input predictive sys-
tem, 8

http://www.openyou.org/libs/ interface to Emotiv Epoc, 12

Tech
http://github.com/qdot/emokit/issues/4 Notes and keys for the im-

plementation, 18
http://http://lxr.free-electrons.com/source/drivers/hid/hidraw.c

HID driver, 20
http://http://www.iogear.com/product/GUWH104KIT/ Wireless hub,

17
http://www.nordicsemi.com/ Nordic Semiconductor site, 17

Tools
http://www.addictivetips.com/mobile/install-clockworkmod-recovery-on-acer-iconia-a500-honeycomb-tablet/

Recovery tool for Acer Iconia, 50
http://www.clockworkmod.com/ A recovery tool for Android, 49

BCI — Technical report

	Introduction
	Ongoing research
	Emotiv Epoc
	Technical infos
	From Emotiv forum

	Software interface
	Emokit
	OpenVibe
	Applications
	Roadmap

	Hands on tests!
	Hardware connection
	Primary data reading
	An open server
	OpenVIBE test
	Test: Evoked potential
	Emotiv to OpenVibe and EEGLab
	Getting the Emotiv EPOC raw data
	From raw data to OpenVibe
	From raw data to EEGLab
	Conclusion: OpenVibe and EEGLab

	A first manual P300 elaboration

	Resources
	Not strictly BCI

	Equipment
	Tablets, Android, Kernel
	ASUS TF101
	VIA8560
	ARM toolchain
	Kernel sources
	Tablet ROM update

	Debian on the Mid and Via8650 tablet

	Acer Iconia A500 kernel recompile
	A500 and ClockworkMod ROM Manager
	Kernel compilation
	Android partitions' structure
	The kernel and its partition
	Iconia A500 and Emotiv EPOC

	References

